Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Comput Med Imaging Graph ; 102: 102127, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2061035

RESUMEN

Supervised deep learning has become a standard approach to solving medical image segmentation tasks. However, serious difficulties in attaining pixel-level annotations for sufficiently large volumetric datasets in real-life applications have highlighted the critical need for alternative approaches, such as semi-supervised learning, where model training can leverage small expert-annotated datasets to enable learning from much larger datasets without laborious annotation. Most of the semi-supervised approaches combine expert annotations and machine-generated annotations with equal weights within deep model training, despite the latter annotations being relatively unreliable and likely to affect model optimization negatively. To overcome this, we propose an active learning approach that uses an example re-weighting strategy, where machine-annotated samples are weighted (i) based on the similarity of their gradient directions of descent to those of expert-annotated data, and (ii) based on the gradient magnitude of the last layer of the deep model. Specifically, we present an active learning strategy with a query function that enables the selection of reliable and more informative samples from machine-annotated batch data generated by a noisy teacher. When validated on clinical COVID-19 CT benchmark data, our method improved the performance of pneumonia infection segmentation compared to the state of the art.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Imagenología Tridimensional/métodos , Aprendizaje Automático Supervisado , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos
2.
IEEE Trans Med Imaging ; 41(11): 3128-3145, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1874353

RESUMEN

Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD can be explored for use on other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future. Our implementation is available online at https://www.github.com/Sadegh-Saberian/DEEMD.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo
3.
Comput Biol Med ; 136: 104704, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1330720

RESUMEN

Chest X-ray images are used in deep convolutional neural networks for the detection of COVID-19, the greatest human challenge of the 21st century. Robustness to noise and improvement of generalization are the major challenges in designing these networks. In this paper, we introduce a strategy for data augmentation using the determination of the type and value of noise density to improve the robustness and generalization of deep CNNs for COVID-19 detection. Firstly, we present a learning-to-augment approach that generates new noisy variants of the original image data with optimized noise density. We apply a Bayesian optimization technique to control and choose the optimal noise type and its parameters. Secondly, we propose a novel data augmentation strategy, based on denoised X-ray images, that uses the distance between denoised and original pixels to generate new data. We develop an autoencoder model to create new data using denoised images corrupted by the Gaussian and impulse noise. A database of chest X-ray images, containing COVID-19 positive, healthy, and non-COVID pneumonia cases, is used to fine-tune the pre-trained networks (AlexNet, ShuffleNet, ResNet18, and GoogleNet). The proposed method performs better results compared to the state-of-the-art learning to augment strategies in terms of sensitivity (0.808), specificity (0.915), and F-Measure (0.737). The source code of the proposed method is available at https://github.com/mohamadmomeny/Learning-to-augment-strategy.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Teorema de Bayes , Humanos , Radiografía Torácica , SARS-CoV-2 , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA